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NOMENCLATURE*
a, a constant;
b, exponent in the temperature profile ;
¢ local drag coefficient;
E, a constant;
K, a constant;
Np,,  laminar Prandtl number;
Np,, turbulent Prandtl number;
N Stanton number;
St non-dimensional heat-transfer coefficient (12);
T, temperature;
u*, non-dimensional velocity along the wall?
x*, non-dimensional distance along the wall;
X, non-dimensional distance (5);
vy, non-dimensional distance normal to the wall;
o, non-dimensional thickness of the temperature
profile;
0, non-dimensional temperature (10);
&, non-dimensional distance (4);
@, turbulent contribution to the non-dimensional
total viscosity.
Subscripts
G, main stream ;
S, wall.

1. INTRODUCTION

FOLLOWING a method put forward by Spalding [1], Gardner
and Kestin [2] obtained exact numerical solutions of the
partial differential equation for heat transfer through uni-
form-property ‘“‘universal” turbulent boundary layer, for
various Prandtl numbers. In a later paper [3], Spalding
generalized the solutions in reference [2] for non-unity
turbulent Prandtl number and also gave exact analytical
solutions for the case of Np, = Np,, with a power-law
velocity profile.

* Nomenclature is as in reference [3] where further
details can be found. The numbers in parentheses denote
the defining equations.

It is the purpose of the present communication to present
a profile method for solving the same problem and to ex-
amine the extent to which the resulting approximate solu-
tions agree with the exact solutions. The special feature of this
method is that two integral equations are used in conjunction
with a power-law temperature profile, the two free para-
meters in the profile being the exponent and the “thickness”
of the profile.

The step-wall-temperature problem of a turbulent boun-
dary layer is taken here to illustrate the method ; however, the
method can also be applied to many problems of the
boundary-layer type in fluid mechanics, heat conduction
and diffusion.

2. DESCRIPTION OF THE METHOD

Here all the equations will be given in the generalized form
according to reference [3].

2.1 The partial differential equation

The temperature T in a uniform-property universal
turbulent boundary layer has been shown in reference [3] to
be governed by:

T _ 1
8(x*/Np.)  u*(l + ¢)ou’
{N,,,’,/N,,, +¢ ar}
x et 7 Y
14+ ¢ ou*

Here ¢ is to be obtained from the universal velocity profile
by the relation:

dy*

1+¢=du*'

)

Equation (1) represents the conservation of enthalpy in
the boundary layer for uniform values of density and specific
heat (i.e. small velocities and temperature differences). The
two fundamental assumptions made in obtaining this equa-
tion are : that there is a universal relationship between u* and
y* ; and that the shear stress is uniform across the boundary
layer. These assumptions are known to hold quite well, at
least in the part of the boundary layer nearer to the wall and,
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therefore, equation (1) can be expected to give correct pre-
dictions of heat transfer whenever the thermal boundary
layer is appreciably thinner than the velocity boundary
layer.

Equation (1) can be rewritten in a more convenient form,
in terms of a new independent variable &, as:

oT _ 1 aZT_ 3)
80X u*(Np, /Np, + ¢) 08"

where

EJ ¥ g @
(NpodNp, + 9)

0
and
X = x+/NPr.t' (5)

Here we consider the step-wall-temperature problem; so
the boundary conditions are:

X =0, E=20

}: T =T, (6)
all X, &>
X >0 ¢ =0: T =T, (7

2.2 Integral equations
From the partial differential equation (3), we form two
integral equations by integration with respect to ¢ from 0
to o , after multiplication respectively by unity and T, as
weighting functions. The resulting integral equations are:
«

a0
U (Np,,/Np, + $)0dE = _(7) ; (8)

dx e Js
0
— | u*(Np, /Np, + ¢) 0> d¢ = —(19
IdX Pr,t/ 1N pr = (»\c A
0

[ ac. o
—J~(£ & O
)

where 6 is the dimensionless temperature defined by :

T-T,

6= .
L-T

{10)

In order to solve these integral equations we need an
assumption for the temperature profile.

2.3 The temperature profile
We shall use the following two-parameter temperature
profile.

E<é:

6= (1 - &by,
} (11)
&> 4:

g =0.

Here the two parameters are: b, the exponent ; and § which

has the significance of the
profile.

The dimensionless heat-transfer coefficient, S, defined
by:

“thickness’ of the temperature

_ Na Ny,

T e/
can be shown to be equal to —(Np,/Np, N08/0)s. There-
fore, in terms of the profile parameters, we obtain:

N ATAY:
T NPr,l 5

3. SOLUTION OF THE INTEGRAL EQUATIONS

Here we apply the method outlined above to the following
three cases:

(12)

(13)

(i) laminar velocity profile: y* = u*; Np, = Np, ,;

(ii) seventh-power-law velocity profile: y* = au®’;
Np, = Np,,;and

(i) velocity profile given by the universal law of the wall
due to Spalding [4]; Np,/Np,, = 071, 1, 7, 30, 100,
1000.

Exact analytical solutions for the first two cases are given in
reference [3]; for the third case, exact numerical solutions
are presented in reference [2].

It can be easily seen that, when Np, = Np, ,, the new inde-
pendent variable ¢ becomes the same as u*.

3.1 Laminar velocity profile: y* = u*; Np, = Np, ,
Here
d +
1+¢=:+=L (14)

Substituting the expression for the temperature profile
and eliminating § from the two integral equations, namely (8)
and (9), we get:

6b> —7b —2=0. (15)
This equation has the positive root b = 1-404; this is the

relevant one in the present problem. Integration of equation
(8) then yields:

8 = {1:56(b + 1)(b + 2)}* X ¥, (16)
and
Sy =b/6 =bH1I5b + Db+ D} XE (1)
Substituting the value of b, we get, as the final result:
Sp = 0-543X %, (18)

The corresponding exact solution given in reference [3] is

Sy = 0-53835X %, (19)

The agreement is very satisfactory.
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3.2 Seventh-power-law velocity profile: y* = au*’; Np, =
N Pr,t
Here

dy* .
1+¢=Ei—+=7au*. (20)

Eliminating J from the two integral equations, we get:

(2b+ 1)2b + )(2b +3)...2b+8) 2b—1
G+1b+2b+3)...6+8  2b-1F

21)
The relevant root of this equation is b = 1-11. Now the
integration of (8) yields:

1/9
s ={9b(b + 10+ 20 +3)...0+ 8)} X (@)
56a(71)

and
Sy =b/d =
bsw{ 38a(7!) }1/9 X0, (23)
9b + 1Xb+2Xb+3)...(b+ 8
Substituting the value of b as obtained above, and taking

a = 2412 x 1077 as used in reference [3], we get, as the
final solution:

Sy = 0-1504X 1%, (24)

The exact solution for this case, as given in reference [3], is
Sy = 0-1479X 19 (25)

Again, the coefficients agree within 2 per cent.

3.3 Universal law of the wall, various Prandtl numbers
For this case, we use the following law of the wall due to

Spalding [4]:
Ku+ 2
Ku* - Kyt —
{e -~ 1~ Ku ( o )

(5 ()}

with K = 04, and E = 9-025.

pro=ut o+

toy| -

This gives:
dy* K( .
1+db=du+=l+E{eK -1 - Ku*

(Ku*)?  (Ku*)?
T T T }(27)

In this case, it can be seen that the exponent b does not
have a constant value, but changes with X. Therefore, the
two integral equations should be treated as two simultancous
ordinary differential equations with b and § as the dependent
variables. Then these can be solved by the standard tech-
niques of numerical forward integration.

Unlike the first two cases, here it is necessary to have u*
as a function of ¢ and Np,/Np, . In the present work, this
function was obtained by evaluating the quadrature in
equation (4) numerically.

The solutions were obtained from X = 1 to X = 10° for
Np,/Np,, = 071, 1, 7, 30, 100 and 1000. For the starting
values at X = 1, the results of the first case (described in
Section 3.1 above) were used. Thus the values of b and § at
the start of the integration were given by:

b = 1-404, (28)

and

5 = {15b(b + 1)b + 2PXH(Np/Np, )t (29)

[This is a modified form of equation (16); the modification
accounts for the fact that here Np, # Np, ,.] Since the law
of the wall given by equation (26) has y* = u* as the asymp-
tote for small u™, the results of the first case form a good
starting point at low values of X.

The difference between the present results and the exact
solutions is everywhere less than 2 per cent* ; this can be seen
from Table 1 where the results of the present computations
are given with the exact values from reference [2]. Thus,
by use of two integral equations it has been possible to attain
good accuracy with much less computing time than was
needed for the exact solutions.

4. CONCLUSIONS

(i) An approximate method for the solution of the partial
differential equation for heat transfer in a uniform-property
universal turbulent boundary layer has been described. The
method is of profile type; two integral equations are used to
obtain the two free parameters in the temperature profile.

(ii) Approximate solutions obtained by use of this method
have been compared with available exact solutions. The
agreement is very good.
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*In the case of Np,/Np,, = 30, the present results
differ from the exact values by about 4-5 per cent for
large values of X. This is surprising in view of the good
agreement for all the other values of Np,/Np, . The
reason may be that the exact values from reference [2]
are somewhat in error in this case. This conclusion is fur-
ther supported by the comparison of Table 1 and Tabie
2 in reference [3]; for large values of X, the value of
(¢ — u*) from Table 1 should be equal to [(c,/2)*/
Ng — 1/8r,(] from Table 2. It can be seen that this
condition is not satisfied with sufficient accuracy for
only Np,/Np, , = 30.
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